Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 532
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G483-G494, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573193

RESUMO

Fatty acid oxidation (FAO) releases the energy stored in fat to maintain basic biological processes. Dehydrogenation is a major way to oxidize fatty acids, which needs NAD+ to accept the released H+ from fatty acids and form NADH, which increases the ratio of NADH/NAD+ and consequently inhibits FAO leading to the deposition of fat in the liver, which is termed fatty liver or steatosis. Consumption of alcohol (ethanol) initiates simple steatosis that progresses to alcoholic steatohepatitis, which constitutes a spectrum of liver disorders called alcohol-associated liver disease (ALD). ALD is linked to ethanol metabolism. Ethanol is metabolized by alcohol dehydrogenase (ADH), microsomal ethanol oxidation system (MEOS), mainly cytochrome P450 2E1 (CYP2E1), and catalase. ADH also requires NAD+ to accept the released H+ from ethanol. Thus, ethanol metabolism by ADH leads to increased ratio of NADH/NAD+, which inhibits FAO and induces steatosis. CYP2E1 directly consumes reducing equivalent NADPH to oxidize ethanol, which generates reactive oxygen species (ROS) that lead to cellular injury. Catalase is mainly present in peroxisomes, where very long-chain fatty acids and branched-chain fatty acids are oxidized, and the resultant short-chain fatty acids will be further oxidized in mitochondria. Peroxisomal FAO generates hydrogen peroxide (H2O2), which is locally decomposed by catalase. When ethanol is present, catalase uses H2O2 to oxidize ethanol. In this review, we introduce FAO (including α-, ß-, and ω-oxidation) and ethanol metabolism (by ADH, CYP2E1, and catalase) followed by the interaction between FAO and ethanol metabolism in the liver and its pathophysiological significance.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Humanos , Catalase , NAD , Citocromo P-450 CYP2E1 , Peróxido de Hidrogênio , Etanol , Ácidos Graxos
2.
Front Pharmacol ; 15: 1332752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584604

RESUMO

Objectives: Isoniazid is a key drug in the chemotherapy of tuberculosis (TB), however, interindividual variability in pharmacokinetic parameters and drug plasma levels may affect drug responses including drug induced hepatotoxicity. The current study investigated the relationships between isoniazid exposure and isoniazid metabolism-related genetic factors in the context of occurrence of drug induced hepatotoxicity and TB treatment outcomes. Methods: Demographic characteristics and clinical information were collected in a prospective TB cohort study in Latvia (N = 34). Time to sputum culture conversion (tSCC) was used as a treatment response marker. Blood plasma concentrations of isoniazid (INH) and its metabolites acetylisoniazid (AcINH) and isonicotinic acid (INA) were determined at three time points (pre-dose (0 h), 2 h and 6 h after drug intake) using liquid chromatography-tandem mass spectrometry. Genetic variations of three key INH-metabolizing enzymes (NAT2, CYP2E1, and GSTM1) were investigated by application PCR- and Next-generation sequencing-based methods. Depending on variables, group comparisons were performed by Student's t-test, one-way ANOVA, Mann-Whitney-Wilcoxon, and Kruskal-Wallis tests. Pearson correlation coefficient was calculated for the pairs of normally distributed variables; model with rank transformations were used for non-normally distributed variables. Time-to-event analysis was performed to analyze the tSCC data. The cumulative probability of tSCC was obtained using Kaplan-Meier estimators. Cox proportional hazards models were fitted to estimate hazard rate ratios of successful tSCC. Results: High TB treatment success rate (94.1%) was achieved despite the variability in INH exposure. Clinical and demographic factors were not associated with either tSCC, hepatotoxicity, or INH pharmacokinetics parameters. Correlations between plasma concentrations of INH and its metabolites were NAT2 phenotype-dependent, while GSTM1 genetic variants did not showed any effects. CYP2E1*6 (T > A) allelic variant was associated with INH pharmacokinetic parameters. Decreased level of AcINH was associated with hepatotoxicity, while decreased values of INA/INH and AcINH/INH were associated with month two sputum culture positivity. Conclusion: Our findings suggest that CYP2E1, but not GSTM1, significantly affects the INH pharmacokinetics along with NAT2. AcINH plasma level could serve as a biomarker for INH-related hepatotoxicity, and the inclusion of INH metabolite screening in TB therapeutic drug monitoring could be beneficial in clinical studies for determination of optimal dosing strategies.

3.
Ann Hum Genet ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622954

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a multifactorial malignancy associated with both genetic and environmental factors. Polymorphic deletions of the phase I and phase II genes involved in the detoxification of potential carcinogens may be a risk factor for nasopharyngeal carcinoma. In this study, we investigated the relationship between CYP2E1 (rs3813867), CYP2A6, GSTM1(rs1183423000) and GSTT1(rs1601993659) gene variations and NPC risk in North African countries with the highest incidence of NPC (Morocco, Algeria and Tunisia). and the evaluation of the potential use of these variants as potential biomarkers for NPC management. METHODS: A total of 600 NPC cases and 545 controls frequency-matched on ethnicity, sex, age and childhood household type, were recruited from three North African countries (Morocco, Algeria and Tunisia) and analysed. Genotyping of CYP2A6 and CYP2E1(rs3813867) was performed by polymerase chain reaction restriction (PCR)-fragment length polymorphism (RFLP) analysis and the GSTM1 (rs1183423000) and GSTT1(rs1601993659) genetic variations were evaluated using the PCR technique. RESULTS: The genotype distributions of CYP2E1(rs3813867), CYP2A6, GSTM1(rs1183423000) and GSTT1(rs1601993659) genotypes did not differ significantly among NPC cases and controls (p > 0.05). Furthermore, our data did not reveal any association with smoking and the studied variants, even when the samples were stratified by the duration period of smoking. CONCLUSION: In this large studied North African population, our findings suggest that the functional CYP2E1, CYP2A6, GSTM1 and GSTT1 variations did not influence NPC susceptibility.

4.
Int Immunopharmacol ; 132: 112003, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603858

RESUMO

Allergic rhinitis (AR) is a common allergic disease. Cytochrome P450, family 2, subfamily e, polypeptide 1 (Cyp2e1) is a member of the cytochrome P450 family of enzymes, while its role in AR is still unveiled. In AR mice, T cell-specific overexpression of Cyp2e1 relieved the AR symptoms. Overexpressed-Cyp2e1 restrained the infiltration of eosinophils and mast cells in the nasal mucosa of mice, and the inflammatory cells in nasal lavage fluid (NALF). Cyp2e1 overexpressed mice exhibited decreased goblet cell hyperplasia and mucus secretion as well as decreased MUC5AC expression in nasal mucosa. The epithelial permeability and integrity of nasal mucosa were improved upon Cyp2e1 overexpression in AR mice, as evidenced by decreased fluorescein isothiocyanate-dextran 4 content in serum, increased expression of IL-25, IL-33, and TSLP in NALF, and increased expression of ZO-1 and occluding in nasal mucosa. Cyp2e1 inhibited Th2 immune response by decreasing the expression and secretion of IL-4, IL-5, and IL-13 as well as the expression of GATA-3 in NALF or nasal mucosa. We proved that Cyp2e1 inhibited the differentiation of naïve CD4+ T cells toward the Th2 subtype, which was regulated by MAFB by binding to Cyp2e1 promoter to activate its transcription. Overall, these results show the potential role of Cyp2e1 in alleviating AR symptoms by restraining CD4+ T cells to Th2 cell differentiation. Our findings provide further insight into the AR mechanism.

5.
Biochem Biophys Res Commun ; 714: 149968, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38657445

RESUMO

BACKGROUND: Chronic alcohol enhances oxidative stress, but the temporal response of antioxidant genes in skeletal muscle following a binge drinking episode remains unknown. METHODS: Experiment 1: C57BL/6Hsd female mice received an IP injection of saline (CON; n = 39) or ethanol (ETOH; n = 39) (5 g/kg). Gastrocnemius muscles were collected from baseline (untreated; n = 3), CON (n = 3), and ETOH (n = 3) mice every 4 h for 48 h. Experiment 2: Gastrocnemius muscles were collected from control-fed (CON-FED; n = 17), control-fasted (CON-FAST; n = 18), or alcohol-fed (ETOH-FED; n = 18) mice every 4hrs for 20hrs after saline or ethanol (5 g/kg). RESULTS: EtOH enhanced Superoxide dismutase 1 (Sod1) and NADPH Oxidase 4 (Nox4) from 24 to 48hr after the binge, while Sod2 and Nox2 were suppressed. Nuclear factor erythroid-derived 2-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) increased 12hrs after intoxication. Cytochrome P450 oxidoreductase (Por), Heme oxygenase 1 (Ho1), Peroxiredoxin 6 (Prdx6), Glutamate-cysteine ligase catalytic subunit (Gclc), Glutamate-cysteine ligase modifier subunit (Gclm), and Glutathione-disulfide reductase (Gsr) were increased by ETOH starting 12-16hrs post-binge. Fasting had similar effects on Nrf2 compared to alcohol, but downstream targets of NRF2, including Por, Ho1, Gclc, and Gclm, were differentially altered with fasting and EtOH. CONCLUSION: These data suggest that acute alcohol intoxication induced markers of oxidative stress and antioxidant signaling through the NRF2 pathway and that there were effects of alcohol independent of a possible decrease in food intake caused by binge intoxication.

6.
Redox Biol ; 71: 103107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479224

RESUMO

Fibroblast growth factor 23 (FGF23) is a member of endocrine FGF family, along with FGF15/19 and FGF21. Recent reports showed that under pathological conditions, liver produces FGF23, although the role of hepatic FGF23 remains nebulous. Here, we investigated the role of hepatic FGF23 in alcoholic liver disease (ALD) and delineated the underlying molecular mechanism. FGF23 expression was compared in livers from alcoholic hepatitis patients and healthy controls. The role of FGF23 was examined in hepatocyte-specific knock-out (LKO) mice of cannabinoid receptor type 1 (CB1R), estrogen related receptor γ (ERRγ), or FGF23. Animals were fed with an alcohol-containing liquid diet alone or in combination with ERRγ inverse agonist. FGF23 is mainly expressed in hepatocytes in the human liver, and it is upregulated in ALD patients. In mice, chronic alcohol feeding leads to liver damage and induced FGF23 in liver, but not in other organs. FGF23 is transcriptionally regulated by ERRγ in response to alcohol-mediated activation of the CB1R. Alcohol induced upregulation of hepatic FGF23 and plasma FGF23 levels is lost in ERRγ-LKO mice, and an inverse agonist mediated inhibition of ERRγ transactivation significantly improved alcoholic liver damage. Moreover, hepatic CYP2E1 induction in response to alcohol is FGF23 dependent. In line, FGF23-LKO mice display decreased hepatic CYP2E1 expression and improved ALD through reduced hepatocyte apoptosis and oxidative stress. We recognized CBIR-ERRγ-FGF23 axis in facilitating ALD pathology through hepatic CYP2E1 induction. Thus, we propose FGF23 as a potential therapeutic target to treat ALD.


Assuntos
Citocromo P-450 CYP2E1 , Hepatopatias Alcoólicas , Animais , Humanos , Camundongos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Agonismo Inverso de Drogas , Etanol/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo
7.
Animals (Basel) ; 14(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539986

RESUMO

One of the primary substances responsible for the unpleasant odor in boar meat is skatole. Enzymes belonging to the cytochrome P450 (CYP) family play a pivotal role in the hepatic clearance of skatole. This study aimed to investigate the impact of oregano essential oil (OEO), Schisandra chinensis extract (SC), and garlic essential oil (GEO) on hepatic CYP2E1 and CYP2A activity in pigs. In three consecutive trials, cannulated castrated male pigs were provided with a diet containing 0.2-0.3% of one of these plant extracts. Following a 14-day feeding period, the animals were slaughtered, and liver and fat samples were collected. The findings indicate that the activities of CYP2E1 were unaffected by any treatment. However, GEO treatment demonstrated a significant reduction in CYP2A activity (p < 0.05). Pigs treated with GEO also exhibited a notable increase in skatole concentrations in both plasma and adipose tissue. In contrast, animals fed SC displayed elevated skatole concentrations in plasma but not in fat tissue. OEO did not influence skatole concentrations in either blood or fat. Furthermore, the study revealed that a supplementation of 6 g GEO per animal per day induced a significant increase in skatole concentrations in blood plasma within 24 h.

8.
Cell Stem Cell ; 31(3): 341-358.e7, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38402618

RESUMO

Liver injuries often occur in a zonated manner. However, detailed regenerative responses to such zonal injuries at cellular and molecular levels remain largely elusive. By using a fate-mapping strain, Cyp2e1-DreER, to elucidate liver regeneration after acute pericentral injury, we found that pericentral regeneration is primarily compensated by the expansion of remaining pericentral hepatocytes, and secondarily by expansion of periportal hepatocytes. Employing single-cell RNA sequencing, spatial transcriptomics, immunostaining, and in vivo functional assays, we demonstrated that the upregulated expression of the mTOR/4E-BP1 axis and lactate dehydrogenase A in hepatocytes contributes to pericentral regeneration, while activation of transforming growth factor ß (TGF-ß1) signaling in the damaged area mediates fibrotic responses and inhibits hepatocyte proliferation. Inhibiting the pericentral accumulation of monocytes and monocyte-derived macrophages through an Arg-Gly-Asp (RGD) peptide-based strategy attenuates these cell-derived TGF-ß1 signalings, thus improving pericentral regeneration. Our study provides integrated and high-resolution spatiotemporal insights into the cellular and molecular basis of pericentral regeneration.


Assuntos
Regeneração Hepática , Fator de Crescimento Transformador beta1 , Regeneração Hepática/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Fígado , Hepatócitos/metabolismo , Proliferação de Células
9.
Front Pharmacol ; 15: 1348145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362149

RESUMO

Introduction: 7,12-dimethylbenz (a) anthracene (DMBA) is a harmful polycyclic aromatic hydrocarbon derivative known for its cytotoxic, carcinogenic, and mutagenic effects in mammals and other species. Annona muricata, L. (Graviola; GRV) is a tropical fruit tree traditionally well-documented for its various medicinal benefits. This investigation is the first report on the potential antioxidant and antinfammatory reno-protective impact of GRV against DMBA-induced nephrotoxicity in rats. Methods: Forty male albino rats were allocated into four equal groups (n = 10). The 1st group served as the control, the 2nd group (GRV) was gastro-gavaged with GRV (200 mg/kg b.wt), the 3rd group (DMBA) was treated with a single dose of DMBA (15 mg/kg body weight), and the 4th group (DMBA + GRV) was gastro-gavaged with a single dose of DMBA, followed by GRV (200 mg/kg b.wt). The GRV administration was continued for 8 weeks. Results and Discussion: Results revealed a significant improvement in renal function, represented by a decrease in urea, creatinine, and uric acid (UA) in the DMBA + GRV group. The antioxidant potential of GRV was confirmed in the DMBA + GRV group by a significant decline in malondialdehyde (MDA) and a significant increase in catalase (CAT), superoxide dismutase (SOD), glutathione S transferase (GST), and reduced glutathione (GSH) compared to DMBA-intoxicated rats; however, it was not identical to the control. Additionally, the antiinflammatory role of GRV was suggested by a significant decline in mRNA expression of cytochrome P450, family 2, subfamily e, polypeptide 1 (CYP2E1), tumor necrosis factor-alpha (TNF-α), and interleukin 1 beta (IL-1ß) in the DMBA + GRV group. Moreover, GRV improved the histopathologic and immunohistochemical expression of TNF-α, CYP450, and IL1ß in DMBA-intoxicated kidney tissue. Conclusively, GRV is a natural medicinal product that can alleviate the renal injury resulting from environmental exposure to DMBA. The reno-protective effects of GRV may involve its anti-inflammatory and/or antioxidant properties, which are based on the presence of phytochemical compounds such as acetogenins, alkaloids, and flavonoids.

10.
Biomedicines ; 12(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255257

RESUMO

We describe a bielectrode system for evaluation of the electrocatalytic activity of cytochrome P450 2E1 (CYP2E1) towards chlorzoxazone. One electrode of the system was employed to immobilize Bactosomes with human CYP2E1, cytochrome P450 reductase (CPR), and cytochrome b5 (cyt b5). The second electrode was used to quantify CYP2E1-produced 6-hydroxychlorzoxazone by its direct electrochemical oxidation, registered using square-wave voltammetry. Using this system, we determined the steady-state kinetic parameters of chlorzoxazone hydroxylation by CYP2E1 of Bactosomes immobilized on the electrode: the maximal reaction rate (Vmax) was 1.64 ± 0.08 min-1, and the Michaelis constant (KM) was 78 ± 9 µM. We studied the electrochemical characteristics of immobilized Bactosomes and have revealed that electron transfer from the electrode occurs both to the flavin prosthetic groups of CPR and the heme iron ions of CYP2E1 and cyt b5. Additionally, it has been demonstrated that CPR has the capacity to activate CYP2E1 electrocatalytic activity towards chlorzoxazone, likely through intermolecular electron transfer from the electrochemically reduced form of CPR to the CYP2E1 heme iron ion.

11.
Cell Mol Life Sci ; 81(1): 34, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214802

RESUMO

This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.


Assuntos
Gastroenteropatias , Hepatopatias Alcoólicas , Doenças Mitocondriais , Humanos , Fígado/metabolismo , Etanol/farmacologia , Apoptose , Estresse Oxidativo , Inflamação/patologia , Gastroenteropatias/metabolismo , Hepatócitos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Mitocondriais/metabolismo , Doenças Mitocondriais/metabolismo
12.
J Investig Med ; 72(1): 67-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37723650

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is strongly associated with disturbances in the intestinal microbiota. Herein, the biological effects and mechanism of Bifidobacterium bifidum BGN4 fractions in regulating hepatocyte ferroptosis during MAFLD progression were investigated. To establish an in vitro model of MAFLD, LO2 cells were subjected to palmitic acid (PA). The mRNA and protein expressions were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. LO2 cell proliferation was examined using 5-diphenyltetrazolium bromide (MTT) and ethynyl-2'-deoxyuridine (EdU) assays, whereas its apoptosis was evaluated by flow cytometry. Furthermore, level of reactive oxygen species (ROS) was measured using 2', 7,-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Additionally, the levels of Fe2+, malondialdehyde (MDA), and glutathione (GSH), as well as the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) were detected using corresponding kits. Chromatin immunoprecipitation and dual-luciferase reporter gene assays were performed to analyze the interaction between sterol-regulatory element binding protein 1 (SREBP1) and cytochrome P450-2E1 (CYP2E1) promoter. Our results revealed that Bifidobacterium bifidum BGN4 fractions effectively ameliorated PA-induced hepatocyte injury, oxidative stress, and ferroptosis. However, these beneficial effects of BGN4 fractions on PA-induced hepatocyte were dramatically reversed by SREBP1 overexpression, suggesting that BGN4 attenuated MAFLD by acting on SREBP1. Moreover, we observed that BGN4 fractions inhibited CYP2E1 transcription by suppressing SREBP1 nuclear translocation. In addition, CYP2E1 overexpression eliminated the inhibitory effect of BGN4 fractions on PA-induced hepatocyte oxidative stress and ferroptosis. These findings collectively indicated that BGN4 fractions reduced CYP2E1 expression by inhibiting SREBP1 nuclear translocation, thereby suppressing hepatocyte oxidative stress and ferroptosis during the development of MAFLD.


Assuntos
Bifidobacterium bifidum , Ferroptose , Humanos , Citocromo P-450 CYP2E1/metabolismo , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Ácido Palmítico , Hepatócitos/metabolismo
13.
Toxicology ; 500: 153692, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38042273

RESUMO

Acetaminophen (APAP) overdose causes liver injury and acute liver failure, as well as acute kidney injury, which is not prevented by the clinical antidote N-acetyl-L-cysteine (NAC). The absence of therapeutics targeting APAP-induced nephrotoxicity is due to gaps in understanding the mechanisms of renal injury. APAP metabolism through Cyp2E1 drives cell death in both the liver and kidney. We demonstrate that Cyp2E1 is localized to the proximal tubular cells in mouse and human kidneys. Virtually all the Cyp2E1 in kidney cells is in the endoplasmic reticulum (ER), not in mitochondria. By contrast, hepatic Cyp2E1 is in both the ER and mitochondria of hepatocytes. Consistent with this subcellular localization, a dose of 600 mg/kg APAP in fasted C57BL/6J mice induced the formation of APAP protein adducts predominantly in mitochondria of hepatocytes, but the ER of the proximal tubular cells of the kidney. We found that reactive metabolite formation triggered ER stress-mediated activation of caspase-12 and apoptotic cell death in the kidney. While co-treatment with 4-methylpyrazole (4MP; fomepizole) or the caspase inhibitor Ac-DEVD-CHO prevented APAP-induced cleavage of procaspase-12 and apoptosis in the kidney, treatment with NAC had no effect. These mechanisms are clinically relevant because 4MP but not NAC also significantly attenuated APAP-induced apoptotic cell death in primary human kidney cells. We conclude that reactive metabolite formation by Cyp2E1 in the ER results in sustained ER stress that causes activation of procaspase-12, triggering apoptosis of proximal tubular cells, and that 4MP but not NAC may be an effective antidote against APAP-induced kidney injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Acetaminofen/toxicidade , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Fomepizol/farmacologia , Fomepizol/uso terapêutico , Antídotos/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Apoptose , Mitocôndrias/metabolismo , Rim/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
14.
Brain Sci ; 13(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38137081

RESUMO

Both excessive alcohol consumption and exposure to high levels of arsenic can lead to neurodegeneration, especially in the hippocampus. Co-exposure to arsenic and alcohol can occur because an individual with an Alcohol Use Disorder (AUD) is exposed to arsenic in their drinking water or food or because of arsenic found directly in alcoholic beverages. This study aims to determine if co-exposure to alcohol and arsenic leads to worse outcomes in neurodegeneration and associated mechanisms that could lead to cell death. To study this, mice were exposed to a 10-day gavage model of alcohol-induced neurodegeneration with varying doses of arsenic (0, 0.005, 2.5, or 10 mg/kg). The following were examined after the last dose of ethanol: (1) microglia activation assessed via immunohistochemical detection of Iba-1, (2) reactive oxygen and nitrogen species (ROS/RNS) using a colorimetric assay, (3) neurodegeneration using Fluoro-Jade® C staining (FJC), and 4) arsenic absorption using ICP-MS. After exposure, there was an additive effect of the highest dose of arsenic (10 mg/kg) in the dentate gyrus of alcohol-induced FJC+ cells. This additional cell loss may have been due to the observed increase in microglial reactivity or increased arsenic absorption following co-exposure to ethanol and arsenic. The data also showed that arsenic caused an increase in CYP2E1 expression and ROS/RNS production in the hippocampus which could have independently contributed to increased neurodegeneration. Altogether, these findings suggest a potential cyclical impact of co-exposure to arsenic and ethanol as ethanol increases arsenic absorption but arsenic also enhances alcohol's deleterious effects in the CNS.

15.
Xenobiotica ; 53(10-11): 573-580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934191

RESUMO

Cytochromes P450 (CYPs or P450s) are important enzymes for drug metabolism. Tree shrews are non-primate animal species used in various fields of biomedical research, including infection (especially hepatitis viruses), depression, and myopia. A recent tree shrew genome analysis indicated that the sequences and the numbers of P450 genes are similar to those of humans; however, P450s have not been adequately identified and analysed in this species.In this study, a novel CYP2E1 was isolated from tree shrew liver and was characterised in comparison with human, dog, and pig CYP2E1. Tree shrew CYP2E1 and human CYP2E1 showed high amino acid sequence identity (83%) and were closely related in a phylogenetic tree.Gene and genome structures of CYP2E1 were generally similar in humans, dogs, pigs, and tree shrews. Tissue expression patterns showed that tree shrew CYP2E1 mRNA was predominantly expressed in liver, just as for dog and pig CYP2E1 mRNAs. In tree shrews, recombinant CYP2E1 protein and liver microsomes metabolised chlorzoxazone and p-nitrophenol, probe substrates of human CYP2E1, just as they do in dogs and pigs.These results suggest that tree shrew CYP2E1 encodes a functional drug-metabolising enzyme that plays a role in the liver, similar to human CYP2E1.


Assuntos
Citocromo P-450 CYP2E1 , Tupaia , Humanos , Suínos , Animais , Cães , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Tupaia/metabolismo , Clorzoxazona/metabolismo , Tupaiidae/metabolismo , Filogenia , Musaranhos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
16.
Pharmaceutics ; 15(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38004588

RESUMO

Dyslipidemia and obesity are recognized as two of the major global health issues and main risk factors for coronary heart disease and cerebrovascular disease. In recent years, carob has shown certain antioxidant and anti-dyslipidemic potential. In this study, Wistar rats were fed with a standard and cholesterol-enriched diet and treated orally with carob extract and simvastatin for four weeks. After sacrifice, blood samples were collected for biochemical analysis, and liver tissue was taken for histological and immunohistochemical assessment. Weight gain was significantly higher in groups fed with cholesterol-fortified granules; total cholesterol was found to be significantly lower in the hypercholesterolemic groups treated with simvastatin and simvastatin/carob combined regimens compared with hypercholesterolemic animals treated with saline (p < 0.05). The same was true for low-density lipoprotein cholesterol and the LDL/HDL ratio (p < 0.05). Adiponectin was remarkably higher in animals treated with simvastatin compared to all other groups (p < 0.05). Leptin was significantly lower in groups treated with carob and simvastatin compared to the hypercholesterolemic group treated with saline (p < 0.05). Carob/simvastatin co-administration reduced hepatocyte damage and improved liver morphology. A study confirmed the anti-dyslipidemic, anti-obesity, and hepatoprotective potential of carob pulp alone or in combination with simvastatin in the treatment of high-fat diet-fed rats.

17.
Curr Drug Metab ; 24(10): 684-699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927072

RESUMO

AIMS: To identify single nucleotide polymorphisms (SNPs) of paracetamol-metabolizing enzymes that can predict acute liver injury. BACKGROUND: Paracetamol is a commonly administered analgesic/antipyretic in critically ill and chronic renal failure patients and several SNPs influence the therapeutic and toxic effects. OBJECTIVE: To evaluate the role of machine learning algorithms (MLAs) and bioinformatics tools to delineate the predictor SNPs as well as to understand their molecular dynamics. METHODS: A cross-sectional study was undertaken by recruiting critically ill patients with chronic renal failure and administering intravenous paracetamol as a standard of care. Serum concentrations of paracetamol and the principal metabolites were estimated. Following SNPs were evaluated: CYP2E1*2, CYP2E1_-1295G>C, CYP2D6*10, CYP3A4*1B, CYP3A4*2, CYP1A2*1K, CYP1A2*6, CYP3A4*3, and CYP3A5*7. MLAs were used to identify the predictor genetic variable for acute liver failure. Bioinformatics tools such as Predict SNP2 and molecular docking (MD) were undertaken to evaluate the impact of the above SNPs with binding affinity to paracetamol. RESULTS: CYP2E1*2 and CYP1A2*1C genotypes were identified by MLAs to significantly predict hepatotoxicity. The predictSNP2 revealed that CYP1A2*3 was highly deleterious in all the tools. MD revealed binding energy of -5.5 Kcal/mol, -6.9 Kcal/mol, and -6.8 Kcal/mol for CYP1A2, CYP1A2*3, and CYP1A2*6 against paracetamol. MD simulations revealed that CYP1A2*3 and CYP1A2*6 missense variants in CYP1A2 affect the binding ability with paracetamol. In-silico techniques found that CYP1A2*2 and CYP1A2*6 are highly harmful. MD simulations revealed CYP3A4*2 (A>G) had decreased binding energy with paracetamol than CYP3A4, and CYP3A4*2(A>T) and CYP3A4*3 both have greater binding energy with paracetamol. CONCLUSION: Polymorphisms in CYP2E1, CYP1A2, CYP3A4, and CYP3A5 significantly influence paracetamol's clinical outcomes or binding affinity. Robust clinical studies are needed to identify these polymorphisms' clinical impact on the pharmacokinetics or pharmacodynamics of paracetamol.


Assuntos
Citocromo P-450 CYP1A2 , Falência Renal Crônica , Humanos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Polimorfismo de Nucleotídeo Único , Simulação de Acoplamento Molecular , Estado Terminal , Estudos Transversais , Fígado/metabolismo , Falência Renal Crônica/metabolismo , Aprendizado de Máquina Supervisionado , Algoritmos
18.
Toxicol Rep ; 11: 355-367, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37868808

RESUMO

Confronting the profound public health concern of alcohol-induced liver damage calls for inventive therapeutic measures. The social, economic, and clinical ramifications are extensive and demand a comprehensive understanding. This thorough examination uncovers the complex relationship between alcohol intake and liver damage, with a special emphasis on the pivotal roles of the Toll-like receptor 4 (TLR4)/NF-κB p65 and CYP2E1/ROS/Nrf2 signalling networks. Different alcohol consumption patterns, determined by a myriad of factors, have significant implications for liver health, leading to a spectrum of adverse effects. The TLR4/NF-κB p65 pathway, a principal regulator of inflammation and immune responses, significantly contributes to various disease states when its balance is disrupted. Notably, the TLR4/MD-2-TNF-α pathway has been linked to non-alcohol related liver disease, while NF-κB activation is associated with alcohol-induced liver disease (ALD). The p65 subunit of NF-κB, primarily responsible for the release of inflammatory cytokines, hastens the progression of ALD. Breakthrough insights suggest that curcumin, a robust antioxidant and anti-inflammatory compound sourced from turmeric, effectively disrupts the TLR4/NF-κB p65 pathway. This heralds a new approach to managing alcohol-induced liver damage. Initial clinical trials support curcumin's therapeutic potential, highlighting its ability to substantially reduce liver enzyme levels. The narrative surrounding alcohol-related liver injury is gradually becoming more intricate, intertwining complex signalling networks such as TLR4/NF-κB p65 and CYP2E1/ROS/Nrf2. The protective role of curcumin against alcohol-related liver damage marks the dawn of new treatment possibilities. However, the full realisation of this promising therapeutic potential necessitates rigorous future research to definitively understand these complex mechanisms and establish curcumin's effectiveness and safety in managing alcohol-related liver disorders.

19.
Adv Sci (Weinh) ; 10(35): e2303975, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875398

RESUMO

Lung cancer is the leading cause of death among all cancers. A persistent chronic inflammatory microenvironment is highly correlated with lung cancer. However, there are no anti-inflammatory agents effective against lung cancer. Cytochrome P450 2E1 (CYP2E1) plays an important role in the inflammatory response. Here, it is found that CYP2E1 is significantly higher in the peritumoral tissue of non-small cell lung cancer (NSCLC) patients and lung tumor growth is significantly impeded in Cyp2e1-/- mice. The novel CYP2E1 inhibitor Q11, 1-(4-methyl-5-thialzolyl) ethenone, is effective in the treatment of lung cancer in mice, which can inhibit cancer cells by changing macrophage polarization rather than directly act on the cancer cells. It is also clarify that the benefit of Q11 may associated with the IL-6/STAT3 and MAPK/ERK pathways. The data demonstrate that CYP2E1 may be a novel inflammatory target and that Q11 is effective on lung cancer by regulation of the inflammatory microenvironment. These findings provide a molecular basis for targeting CYP2E1 and illustrate the potential druggability of the CYP2E1 inhibitor Q11.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Citocromo P-450 CYP2E1/metabolismo , Inflamação/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Microambiente Tumoral
20.
Iran J Med Sci ; 48(5): 474-483, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37786472

RESUMO

Background: Anti-tuberculosis drug-induced hepatotoxicity can result from genetic polymorphism of the isoniazid (INH) metabolizing enzyme. This study aimed to determine the effect of genetic polymorphism of N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1) genes on serum isoniazid level and drug-induced hepatotoxicity. Methods: A cross-sectional study was conducted on 120 patients (with and without hepatotoxicity) with pulmonary tuberculosis from June 2019 to April 2022 in Tehran (Iran). High-performance liquid chromatography was used to measure the serum concentration of INH and acetylisoniazid (AcINH). NAT2 and CYP2E1 genotypes were determined using polymerase chain reaction and restriction fragment length polymorphism methods. Data were analyzed using SPSS software (version 22.0) with independent two-sample t test, Chi square test, or Fisher's exact test. P<0.05 was considered statistically significant. Results: A total of 40 patients showed hepatotoxicity. The risk of anti-tuberculosis drug-induced hepatotoxicity was significantly higher in patients who are slow acetylator (SA) phenotype than in rapid or intermediate acetylator (P<0.001). NAT2*4/*4 genotypes were not found in patients with hepatotoxicity. The frequency of NAT2*5 and NAT2*6 haplotypes and serum INH concentration was significantly higher in patients with hepatotoxicity than in those without (P=0.003, P<0.001, and P<0.001, respectively). NAT2*4 haplotype was correlated with protection against hepatotoxicity. A combination of SA and CYP2E1 C1/C1 genotype was significantly associated with hepatotoxicity (P<0.001). Conclusion: Hepatotoxicity in Iranian patients with tuberculosis was confirmed due to the presence of NAT2 SA polymorphism. Determining NAT2 and CYP2E1 genotypes and/or INH concentration can be a valuable tool to identify patients susceptible to hepatotoxicity.


Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Isoniazida/efeitos adversos , Antituberculosos/efeitos adversos , Citocromo P-450 CYP2E1/genética , Estudos Transversais , Irã (Geográfico) , Genótipo , Doença Hepática Induzida por Substâncias e Drogas/genética , Acetiltransferases/genética , Arilamina N-Acetiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...